How to write a type class `derived` method using macros
In the main derivation documentation page, we explained the details behind Mirror
s and type class derivation. Here we demonstrate how to implement a type class derived
method using macros only. We follow the same example of deriving Eq
instances and for simplicity we support a Product
type e.g., a case class Person
. The low-level method we will use to implement the derived
method exploits quotes, splices of both expressions and types and the scala.quoted.Expr.summon
method which is the equivalent of summonFrom
. The former is suitable for use in a quote context, used within macros.
As in the original code, the type class definition is the same:
trait Eq[T]:
def eqv(x: T, y: T): Boolean
we need to implement a method Eq.derived
on the companion object of Eq
that produces a quoted instance for Eq[T]
. Here is a possible signature,
given derived[T: Type](using Quotes): Expr[Eq[T]]
and for comparison reasons we give the same signature we had with inline
:
inline given derived[T](using Mirror.Of[T]): Eq[T] = ???
Note, that since a type is used in a subsequent stage it will need to be lifted to a Type
by using the corresponding context bound. Also, note that we can summon the quoted Mirror
inside the body of the derived
thus we can omit it from the signature. The body of the derived
method is shown below:
given derived[T: Type](using Quotes): Expr[Eq[T]] =
import quotes.reflect.*
val ev: Expr[Mirror.Of[T]] = Expr.summon[Mirror.Of[T]].get
ev match
case '{ $m: Mirror.ProductOf[T] { type MirroredElemTypes = elementTypes }} =>
val elemInstances = summonAll[elementTypes]
def eqProductBody(x: Expr[Product], y: Expr[Product])(using Quotes): Expr[Boolean] = {
elemInstances.zipWithIndex.foldLeft(Expr(true)) {
case (acc, ('{ $elem: Eq[t] }, index)) =>
val indexExpr = Expr(index)
val e1 = '{ $x.productElement($indexExpr).asInstanceOf[t] }
val e2 = '{ $y.productElement($indexExpr).asInstanceOf[t] }
'{ $acc && $elem.eqv($e1, $e2) }
}
}
'{ eqProduct((x: T, y: T) => ${eqProductBody('x.asExprOf[Product], 'y.asExprOf[Product])}) }
// case for Mirror.ProductOf[T]
// ...
Note, that in the inline
case we can merely write summonAll[m.MirroredElemTypes]
inside the inline method but here, since Expr.summon
is required, we can extract the element types in a macro fashion. Being inside a macro, our first reaction would be to write the code below. Since the path inside the type argument is not stable this cannot be used:
'{
summonAll[$m.MirroredElemTypes]
}
Instead we extract the tuple-type for element types using pattern matching over quotes and more specifically of the refined type:
case '{ $m: Mirror.ProductOf[T] { type MirroredElemTypes = elementTypes }} => ...
Shown below is the implementation of summonAll
as a macro. We assume that given instances for our primitive types exist.
def summonAll[T: Type](using Quotes): List[Expr[Eq[_]]] =
Type.of[T] match
case '[String *: tpes] => '{ summon[Eq[String]] } :: summonAll[tpes]
case '[Int *: tpes] => '{ summon[Eq[Int]] } :: summonAll[tpes]
case '[tpe *: tpes] => derived[tpe] :: summonAll[tpes]
case '[EmptyTuple] => Nil
One additional difference with the body of derived
here as opposed to the one with inline
is that with macros we need to synthesize the body of the code during the macro-expansion time. That is the rationale behind the eqProductBody
function. Assuming that we calculate the equality of two Person
s defined with a case class that holds a name of type String
and an age of type Int
, the equality check we want to generate is the following:
true
&& Eq[String].eqv(x.productElement(0),y.productElement(0))
&& Eq[Int].eqv(x.productElement(1), y.productElement(1))
Calling the derived method inside the macro
Following the rules in Macros we create two methods. One that hosts the top-level splice eqv
and one that is the implementation. Alternatively and what is shown below is that we can call the eqv
method directly. The eqGen
can trigger the derivation.
extension [T](inline x: T)
inline def === (inline y: T)(using eq: Eq[T]): Boolean = eq.eqv(x, y)
inline given eqGen[T]: Eq[T] = ${ Eq.derived[T] }
Note, that we use inline method syntax and we can compare instance such as Sm(Person("Test", 23)) === Sm(Person("Test", 24))
for e.g., the following two types:
case class Person(name: String, age: Int)
enum Opt[+T]:
case Sm(t: T)
case Nn
The full code is shown below:
import scala.deriving.*
import scala.quoted.*
trait Eq[T]:
def eqv(x: T, y: T): Boolean
object Eq:
given Eq[String] with
def eqv(x: String, y: String) = x == y
given Eq[Int] with
def eqv(x: Int, y: Int) = x == y
def eqProduct[T](body: (T, T) => Boolean): Eq[T] =
new Eq[T]:
def eqv(x: T, y: T): Boolean = body(x, y)
def eqSum[T](body: (T, T) => Boolean): Eq[T] =
new Eq[T]:
def eqv(x: T, y: T): Boolean = body(x, y)
def summonAll[T: Type](using Quotes): List[Expr[Eq[_]]] =
Type.of[T] match
case '[String *: tpes] => '{ summon[Eq[String]] } :: summonAll[tpes]
case '[Int *: tpes] => '{ summon[Eq[Int]] } :: summonAll[tpes]
case '[tpe *: tpes] => derived[tpe] :: summonAll[tpes]
case '[EmptyTuple] => Nil
given derived[T: Type](using q: Quotes): Expr[Eq[T]] =
import quotes.reflect.*
val ev: Expr[Mirror.Of[T]] = Expr.summon[Mirror.Of[T]].get
ev match
case '{ $m: Mirror.ProductOf[T] { type MirroredElemTypes = elementTypes }} =>
val elemInstances = summonAll[elementTypes]
val eqProductBody: (Expr[T], Expr[T]) => Expr[Boolean] = (x, y) =>
elemInstances.zipWithIndex.foldLeft(Expr(true: Boolean)) {
case (acc, (elem, index)) =>
val e1 = '{$x.asInstanceOf[Product].productElement(${Expr(index)})}
val e2 = '{$y.asInstanceOf[Product].productElement(${Expr(index)})}
'{ $acc && $elem.asInstanceOf[Eq[Any]].eqv($e1, $e2) }
}
'{ eqProduct((x: T, y: T) => ${eqProductBody('x, 'y)}) }
case '{ $m: Mirror.SumOf[T] { type MirroredElemTypes = elementTypes }} =>
val elemInstances = summonAll[elementTypes]
val eqSumBody: (Expr[T], Expr[T]) => Expr[Boolean] = (x, y) =>
val ordx = '{ $m.ordinal($x) }
val ordy = '{ $m.ordinal($y) }
val elements = Expr.ofList(elemInstances)
'{ $ordx == $ordy && $elements($ordx).asInstanceOf[Eq[Any]].eqv($x, $y) }
'{ eqSum((x: T, y: T) => ${eqSumBody('x, 'y)}) }
end derived
end Eq
object Macro3:
extension [T](inline x: T)
inline def === (inline y: T)(using eq: Eq[T]): Boolean = eq.eqv(x, y)
inline given eqGen[T]: Eq[T] = ${ Eq.derived[T] }